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The formation of shear and density layers
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linear processes
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The initial evolution of the momentum and buoyancy fluxes in a freely decaying,
stably stratified homogeneous turbulent flow with r.m.s. velocity u′0 and integral
lengthscale l0 is calculated using a weakly inhomogeneous and unsteady form of the
rapid distortion theory (RDT) in order to study the growth of small temporal and
spatial perturbations in the large-scale mean stratification N(z, t) and mean velocity
profile ū(z, t) (here N is the local Brunt–Väisälä frequency and ū is the local velocity
of the horizontal mean flow) when the ratio of buoyancy forces to inertial forces is
large, i.e. Nl0/u

′
0 � 1. The lengthscale L of the perturbations in the mean profiles of

stratification and shear is assumed to be large compared to l0 and the presence of a
uniform background mean shear can be taken into account in the model provided
that the inertial shear forces are still weaker than the buoyancy forces, i.e. when the
Richardson number Ri = (N/∂zū)

2 � 1 at each height.
When a mean shear perturbation is introduced initially with no uniform background

mean shear and uniform stratification, the analysis shows that the perturbations in the
mean flow profile grow on a timescale of order N−1. When the mean density profile is
perturbed initially in the absence of a background mean shear, layers with significant
density gradient fluctuations grow on a timescale of order N−1

0 (where N0 is the order
of magnitude of the initial Brunt–Väisälä frequency) without any associated mean
velocity gradients in the layers. These results are in good agreement with the direct
numerical simulations performed by Galmiche et al. (2002) and are consistent with the
earlier physically based conjectures made by Phillips (1972) and Posmentier (1977).
The model also shows that when there is a background mean shear in combination
with perturbations in the mean stratification, negative shear stresses develop which
cause the mean velocity gradient to grow in the density layers. The linear analysis for
short times indicates that the scale on which the mean perturbations grow fastest is
of order u′0/N0, which is consistent with the experiments of Park et al. (1994).

We conclude that linear mechanisms are widely involved in the formation of shear
and density layers in stratified flows as is observed in some laboratory experiments
and geophysical flows, but note that the layers are also significantly influenced by
nonlinear and dissipative processes at large times.
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1. Introduction

Although the main effect of stable stratification (characterized by the Brunt–Väisälä
frequency N = [−(g/ρr) dρ̄/dz]1/2, where g is the acceleration due to gravity, ρ̄(z) is
the mean density vertical profile and ρr is a suitable reference density) is to damp the
vertical component of turbulence, and therefore to reduce the rate of mixing at large
and small scales, there are subtle ways in which locally the diffusivity of mass and
momentum is increased. Observations in natural and laboratory flows show that this
generally occurs in stratified turbulent flows characterized by sharp vertical variations
in the velocity and density fields, associated with the presence of horizontal ‘layers’. In
some cases, these may become part of the local mean state of the flow field, or decay
slowly, or may be relatively transitory. This layering phenomenon has a significant
effect on the net fluxes of momentum, heat and mass (Linden 1979).

Layering processes in geophysical turbulent flows involve various mechanisms, such
as turbulence–mean flow interactions, wave–turbulence interactions, vortex–vortex
interactions and wave–mean flow interactions (reviewed by Hunt & Galmiche 2000).
Experimental and theoretical evidence of layer formation has been given by Billant
& Chomaz (2000) in terms of columnar vortex pair instability. Wave–mean flow
interactions involved in various systems have been extensively studied (e.g. Müller
1976; Yang 1990; Manin & Nazarenko 1994). Homogeneous, stratified turbulence has
been widely investigated by Godeferd & Cambon (1994) using EDQNM methods
to show that non-linear energy transfers force the tendency to anistropy and the
formation of a random distribution of horizontal structures with long but finite
timescales. This tendency has also been observed in direct numerical simulations (e.g.
Métais & Herring 1989) and in recent stratospheric measurements (Alisse & Sidi
2000). The anistropic features of homogeneous turbulence can be explained by an
energy transfer to Fourier modes with mainly vertical wave-vectors, a mechanism
which is controlled by the vortex–vortex interactions (Godeferd & Cambon 1994).

On the other hand, the numerical simulations performed by Galmiche, Thual &
Bonneton (2002) demonstrate that the turbulence–mean field interactions are widely
involved in the layering processes. These simulations show that the presence of a
stable stratification modifies the turbulence–mean field interactions considerably in
such a way that layers tend to form associated with vertical variations in the mean
stratification and shear profiles. For instance, horizontal mean flow modes can grow
in strongly stratified turbulence, which causes shear layers to develop. This is the
situation we are concerned with here, where the mean field is either a horizontal
mean flow profile or the mean density profile. We study theoretically the processes
involved in these interactions and discuss their consequences for layering. There are
some strong connections between the present approach for vertically inhomogeneous
stratified turbulence and the approach used by Godeferd & Cambon (1994) to study
the energy drain into the modes with vertical wave-vectors in stratified turbulence, as
these modes can be associated with vertical inhomogeneity of turbulence.

The problem of layer formation was addressed in general terms by Phillips (1972)
who asked ‘Turbulence in a strongly stratified fluid – is it unstable?’ Of course, this
question is related to the problem of stability of stratified shear flows addressed in the
early 1960s (Miles 1961; Howard 1961). More recently, Majda & Shefter (1998) have
used a linear stability analysis to further investigate the case of strongly stratified
shear flows (see also the review by Cambon & Scott 1999). However, many aspects of
layer formation in stratified turbulent flows cannot be accounted for in the framework
of these linear stability calculations, and need further investigation. In particular, it is
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Figure 1. Vertical buoyancy flux F as a function of the salinity vertical gradient. This plot was
discussed by Posmentier (1977) to explain the formation of salinity layers in the ocean.

important to understand how a small perturbation in the mean flow profile evolves in
the presence of an active turbulent field. This problem has been addressed by Moffatt
(1967) for non-stratified turbulent flows with large vertical background shear.

In most previous theoretical studies of stratified turbulence, the stratification and
the mean shear are assumed to be uniform at any time. The question we address
here is how initially homogeneous turbulence in the presence of a stable stratification
affects perturbations in the mean density and velocity fields. It is necessary to take
these vertical and temporal variations into account in order to explain the growth of
shear and density layers as seen in the laboratory experiments of Park, Whitehead
& Gnanadeskian (1994) for instance. Whereas consideration of the large-scale fluc-
tuations that span the lengthscale of any perturbation in the mean fields is essential
in non-stratified flows (Trefethen et al. 1993; Liu 1989), it is assumed here that the
stratification is strong enough that the lengthscale L of the perturbations in the mean
flow and stratification profiles is large compared to the typical lengthscale of turbu-
lence l0. This provides a method for calculating how perturbations to the mean flow
profile distort the turbulence in such a way that the Reynolds stresses may amplify
the perturbations.

It is interesting to compare this detailed approach with the global heuristic ar-
guments of Posmentier (1977) (and independently Puttock 1976) for the formation
of density layers, which in oceanography are called salinity fine structures. Let us
consider the equation for conservation of the mean salinity S(z, t) (where z is the
vertical coordinate and t is time) in a horizontally homogeneous but vertically varying
profile,

∂tS = −∂zF, (1.1)

where F is the flux associated with turbulent fluctuations and microscale mixing.
Posmentier (1977) pointed out that equation (1.1) may be written as

∂tS = −F∗∂zzS , (1.2)

where ∗ denotes differentiation with respect to ∂zS and F∗ has the dimension of a
diffusivity.

The sign of F∗ is a key point which determines the stability of the solutions for
S (see figure 1, after Posmentier 1977). Equation (1.2) has stable solutions if F∗ < 0
and unstable solutions if F∗ > 0. In the unstable case, any perturbation in the
mean density profile is amplified leading to the formation of layers; however the
problem is mathematically ill-posed since the growth rate diverges for small-scale
perturbations. Furthermore, this theoretical discussion did not differentiate between
stratified turbulent flows with and without mean shear, and did not account for the
energy supply to the flow.

Several phenomenological models (see for instance Barenblatt et al. 1993 and
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Balmforth, Llewellyn Smith & Young 1998) have been used to estimate the buoyancy
fluxes as a function of the mean density gradient in order to simulate layering
processes. Various physical arguments, such as the existence of a finite mixing length
or a finite adjustment time of turbulence, have been included in these models in order
to avoid singularities in the solutions and to predict the layer formation. In these
models, the turbulence is assumed to be in a state that is quasi-steady, and developing
only as slowly as the mean gradients. This is consistent with the conditions of the
stirred tank experiment of Park et al. (1994). There are other situations where the
turbulence is changing rapidly, for example decaying, and then the model (1.2) is not
necessarily applicable. In the early stages of homogeneous stratified grid turbulence
(Rottman & Britter 1986), no maximum in the curve of the buoyancy flux against the
mean density gradient and no layering were observed. On the other hand, through
different mechanisms to those proposed by Phillips (1972), layers were observed in
the final stage of decay of turbulence by Pearson & Linden (1983), who developed
a theory where viscous rather than turbulent shear stresses balanced the buoyancy
forces.

To overcome these uncertainties, a quantitative study is proposed for the evolution
of the mean density profile ρ̄ and the horizontal mean flow profile ū as they vary
initially with height z and time (here the bar denotes either the ensemble average
or the average in a horizontal plane). In the previous studies, the effects of the
coupling with the mean velocity gradients had not been considered despite the fact
that in many environmental flows the mean shear plays an active dynamic role in
the processes. In this case, the momentum and buoyancy fluxes, and therefore the
time evolution of ū and ρ̄, are functions of the local mean shear and mean density
gradient. In the absence of a mean horizontal pressure gradient, the mean flow and
mean density fields evolve as

∂tū = − ∂Fu

∂(∂zū)
∂zzū− ∂Fu

∂(∂zρ̄)
∂zzρ̄,

∂tρ̄ = − ∂Fρ

∂(∂zū)
∂zzū− ∂Fρ

∂(∂zρ̄)
∂zzρ̄,

 (1.3)

where Fu is the turbulent momentum flux and Fρ is the turbulent buoyancy flux.
The aim of the present paper is to study this system in the first stage of decay of

turbulence. We focus on the initial development over a time t of turbulence generated
at t = 0 with r.m.s. velocity u′0 in the presence of a strong stratification N and a
horizontal mean flow ū(z), in particular the evolution of momentum and buoyancy
fluxes using the linearized method of rapid distortion theory (RDT). In this analysis,
the assumptions are not based on a comparison between the amplitudes of the mean
and fluctuating fields (as is usually the case in linear stability analysis), but instead
are based on a comparison between the various timescales of the flow, namely the
buoyancy timescale, the shear timescale and the typical timescale associated with the
initial turbulent motions. In extended use of RDT (see also Nazarenko, Kevlahan
& Dubrulle 1999), the nonlinear effects in the equations of motion are small as
long as t < l0/u

′
0 (the integral timescale), so that the linearized equations of motion

accurately describe the changes of the energy-containing eddies in the turbulence. In
general, RDT describes the most-amplified elements of the flow even for t > l/u′0
but is qualitatively incorrect for the components that are damped, because they are
then susceptible to nonlinearity (Kevlahan & Hunt 1997). However, if the linear
distortion effects are large enough compared to the typical nonlinear inertial forces,



Layers in stratified turbulence 247

the linear theory over t > l0/u
′
0 describes the main structural features of the large-

scale turbulence. The methodology of RDT has already been applied by Hunt, Stretch
& Britter (1988), van Haren (1993) and Hanazaki & Hunt (1996, 1999) to sheared
and unsheared turbulence in the presence of a uniform stratification. When strong
shear layers develop, the turbulence outside the stratified shear layers and instabilities
within them (e.g. Kelvin–Helmholtz billows) may increase or decrease the intensity of
the shearing processes (e.g. Caulfield 1994).

The case of uniform and constant shear α and stratification N is considered first
as a preliminary to the new calculation for the effects of variations of α and N. The
case of time-dependent mean shear and stratification is considered in § 2.2. In § 2.3,
the z-dependence of the mean shear and stratification is introduced and the coupled
evolution equations for ū(z, t) and ρ̄(z, t) are derived. In § 3, the behaviour of the
coupled system is studied for different sets of initial conditions and the short-time
results are compared to the direct numerical simulations performed by Galmiche et
al. (2002).

2. The rapid distortion model
2.1. Uniform shear and stratification

We first consider a turbulent flow evolving in the presence of a uniform, vertical
mean shear stress and a uniform stable stratification. The three-dimensional velocity
field is u(x, t) = (u, v, w) in a reference frame (e1, e2, e3) where e3 is antiparallel to the
gravitational acceleration g and x = (x, y, z). Index notations (u1, u2, u3) and (x1, x2, x3)
are used, where convenient, instead of (u, v, w) and (x, y, z). The velocity field may be
decomposed as

u(x, t) = ū(z, t) e1 + u′(x, t), (2.1)

where an overbar denotes either the ensemble average or the average over a horizontal
plane. Here, u′ is an initially isotropic and homogeneous turbulent velocity field and
ū is a horizontal mean flow in direction e1 associated with the vertical mean shear α
(ū(z) = αz). Similarly, the fluid density is

ρ(x, t) = ρ̄(z, t) + ρ′(x, t), (2.2)

where ρ̄ is the background density profile and ρ′ is the density fluctuation from the
mean profile. We define the Brunt–Väisälä frequency associated with the background
stratification by

N2 = −(g/ρr)
dρ̄(z)

dz
, (2.3)

where g is the norm of g and ρr a suitable reference density. For convenience, we use
the variable n defined by n = N2.

With fully periodic boundary conditions, RDT uses a Fourier decomposition of the
velocity and density fluctuations:

u′i(x, t) =
∑
k0

û′i(k0, t) eik(t)·x, (2.4)

ρ′(x, t) =
∑
k0

ρ̂′(k0, t) eik(t)·x, (2.5)
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where the wavevector k = (k1, k2, k3) varies with time according to

dk1

dt
= 0,

dk2

dt
= 0,

dk3

dt
= −k1α, (2.6)

and k0 = k(0) = (k10, k20, k30) (or (k1, k2, k30) as k1 and k2 are constant). The time-
dependence of the vertical wavenumber can be seen as the distortion of the wave-
number space by the background vertical shear. We also use the notation
k(t) = (k2

1 + k2
2 + k2

3(t))1/2 and k0 = (k2
1 + k2

2 + k2
30)

1/2.
As with all nonlinear systems, the Navier–Stokes equations can also be linearized

to calculate the solution near any point in the phase space. In turbulent flows, this
approximation is better for the larger scales of motion. The derivation of the locally
linearized equations of RDT under the Boussinesq approximation may be found in
Townsend (1976):

dû′i
dt

= α

(
2kik1

k2
− δi1

)
û′3 +

(
kik3

k2
− δi3

)
g

ρr
ρ̂′,

dρ̂′

dt
=
ρr

g
nû′3,

 (2.7)

where δij = 0 if i 6= j and δij = 1 if i = j. Here, the effect molecular dissipation is not
taken into account.

The physical implication of the linearization of the equations is that immediately
after the turbulence is initiated, the large-scale energetic eddies do not interact
with one another; therefore the cascade of energy from large to small scales is
neglected for short times. Typically, this assumption is relevant for eddies of size l
and characteristic velocity u′ as long as t � l/u′. In the case of strongly stratified
flows for which the turbulent Froude number Fr = u′0/Nl0 (where l0 and u′0 are the
initial integral lengthscale and r.m.s. velocity associated with turbulence) is small,
the timescale of nonlinear transfers l0/u

′
0 is large compared to the timescale of

stratification N−1 and RDT is an accurate approximation for the energy-containing
scales when t = O(N−1)� l0/u

′
0.

When a uniform vertical mean shear is present, α−1 = (dū/dz)−1 is another char-
acteristic timescale of the problem. We assume here that the stratification is strong
enough that the Richardson number Ri = N2/α2 is large. This means that N−1 � α−1

and as we are concerned with timescales of order N−1, this implies that αt� 1.
Our assumptions may be summarized as follows:

Fr = u′0/Nl0 � 1, (2.8)

Ri = N2/α2 � 1, (2.9)

t = O(N−1). (2.10)

Note that when α = 0, these assumptions reduce to (2.8) and (2.10), and the crucial
assumption of RDT t � l0/u

′
0 is still satisfied (see e.g. Townsend 1976 for the

unsheared case). When α 6= 0, the strain αt is a small parameter provided that
conditions (2.9) and (2.10) are satisfied. RDT equations (2.7) have already been
evaluated numerically by Komari et al. (1983) and Hunt et al. (1988) with constant
mean shear and stratification for different values of the Richardson number. More
recently, the case of constant shear and stratification has also been investigated
analytically by Hanazaki & Hunt (1999). Here our aim here is to study analytically
in detail the behaviour of this dynamical system for short times, first when N and
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α are fixed, and subsequently when they vary with time. We particularly focus on
the covariances u′w′ and ρ′w′, which determine the momemtum and mass transport
respectively. Only the outline of the analysis is presented here, because much of it
follows previous treatments. Note that if the condition (2.10) is not satisfied so that
t >∼ N−1 and αt ∼ 1, the results of the RDT may still provide a useful approximation
to the statistical and instantaneous eddy structure for large-scale turbulence, because
for some situations the dominant nonlinear terms tend to be suppressed by the linear
distortion processes (Kevlahan & Hunt 1997).

The Fourier components of the velocity and density fields will be expanded as
follows:

û′i(k0, t) =

∞∑
p=0

û′ip(k0)(αt)
p, ρ̂′(k0, t) =

∞∑
p=0

ρ̂′p(k0)(αt)
p. (2.11)

Solving (2.7) at order 3 in αt, we have analytically computed the û′ip and ρ̂′p for p = 1,

2 and 3. This allows us to calculate the spectrum tensors Φij and Φ(ρ)
j as time develops,

where

Φij(k0, t) = 1
2
û′∗i û′j + û′iû′∗j and Φ

(ρ)
j (k0, t) = 1

2
ρ̂′∗û′j + ρ̂′û′∗j , (2.12)

and an asterisk denotes a complex conjugate.
For computational convenience, both the initial velocity and density perturbations

are assumed to be intially isotropic. A slight anisotropy does not greatly affect the
results as shown by Hunt & Carruthers (1990). A discussion on the effect of strong
anisotropy may be found in Cambon & Scott (1999).

The initial conditions are given by

Φij(k0, 0) =
E(k0, 0)

4πk2
0

(
δij − ki0kj0

k2
0

)
and Φ(ρ)(k0, 0) = 2N2 S(k0, 0)

4πk2
0

. (2.13)

However, the results are sensitive to the ratio (r) of the initial turbulent kinetic and
potential energies, namely

KE0 =

∫ ∞
0

E(k0, 0) dk0 = 3
2
u′20 , PE0 =

∫ ∞
0

S(k0, 0) dk0 (2.14)

r = PE0/KE0. (2.15)

We assume that the density and velocity perturbations are initially uncorrelated:

Φ
(ρ)
j (k0, 0) = 0, (2.16)

but the effect of non-zero Φ
(ρ)
j (k, 0) could be taken into account by using the same

method.
Writing the wave-vector in spherical coordinates as

k1 = k0 sin θ cosφ, k2 = k0 sin θ sinφ, k30 = k0 cos θ, (2.17)

correlations u′w′ and ρ′w′ are obtained as

u′w′(t) =

∫ ∞
0

∫ π

0

∫ 2π

0

Φ13(k0, t)k
2
0 sin θ dk0 dθ dφ (2.18)

and

ρ′w′(t) =

∫ ∞
0

∫ π

0

∫ 2π

0

Φ
(ρ)
3 (k0, t)k

2
0 sin θ dk0 dθ dφ. (2.19)
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We find at leading order in Ri, when Ri� 1, that

−u′w′(t)
u′20

= A(αt) + BRi(αt)3 + O((αt)4) (2.20)

and

−ρ′w′(t)α
u′20 dρ̄/dz

= H(αt) + IRi(αt)3 + O((αt)4), (2.21)

where A = 2/5, B = −2/15, H = 1− 2r and I = −(8/15)(1− 2r).
When α = 0, the results are still valid provided that assumptions (2.8) and (2.10) are

satisfied. Then, no momentun flux develops and the buoyancy flux may be rewritten
as

−ρ′w′(t)
(u′20 /N) dρ̄/dz

= H(Nt) + I(Nt)3 + o((Nt)4). (2.22)

These results are to be compared with the solutions for the variances:

u′2/u′20 = 1− 1
10

(1− 2r)(Nt)2 + o((Nt)3),

w′2/u′20 = 1− 4
5
(1− 2r)(Nt)2 + o((Nt)3),

ρ′2/u′20 N2 = 3r + (1− 2r)(Nt)2 + o((Nt)3).

 (2.23)

A = 2/5 is a classical result of RDT (Townsend 1976). H = (1− 2r) is in agreement
with the RDT analysis of Hanazaki & Hunt (1996) with no mean shear. Equation
(2.20) shows that, since the mean shear affects the pressure fluctuations at t = 0,
it affects the mean shear stress when t ∼ α−1, and that, although the stratification
affects the vertical motion when t ∼ N−1, it only affects the shear stress at O(t3),
when t ∼ α−1Ri−1/3. On the other hand, the solution shows that in the limit of
high Richardson number (i.e. strong stratification and weak shear), the buoyancy

flux −ρ′w′ and variances u′2, w′2 and ρ′2 are not affected by the mean shear but
start oscillating under the effect of the restoring buoyancy forces. Notice that their
evolution is controlled by the value of r = PE0/KE0 but oscillations are expected
provided that r 6= 1/2, i.e. PE0/w

′2
0 6= 2/3 (the case r = 1/2 is addressed in Godeferd

& Cambon 1994). On the contrary, the short-time evolution of the momentum flux
does not depend on the initial amount of potential energy. Note how u′2 is reduced
as well as w′2 because of the strong effect of buoyancy pressure gradients.

The momentum and buoyancy fluxes are plotted on figures 2(a) and 3(a) as a
function of αt for Ri = 10 and Ri = 100. The solution for the momentum flux does
not depend on r and the buoyancy flux has been plotted for r = 0 and r = 1.

The behaviour of the solution may be physically interpreted by considering the
motion of the fluid particles for t > 0. Because of buoyancy forces, they immediately
oscillate in the vertical plane in a time period of order π/N (see figures 2b and 3b).
For the first quarter-period, ρ′w′ > 0 and u′w′ < 0, but for the second quarter-period,
when the particles are driven back to their initial level, the associated momentum
and buoyancy fluxes change sign. This is a more significant effect than the effect of
stratification on the variances, which is small and does not change the sign of the
fluxes. Such oscillations of turbulent fluxes were also observed in direct numerical
simulations of the full nonlinear Navier–Stokes equations by Métais & Herring
(1989) and in laboratory experiments by Piccirillo & Van Atta (1997) for instance.
Our solutions, which confirm the numerical results of Hunt et al. (1988), show that
these oscillations are largely linear processes.
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Figure 2. (a) Short-time evolution of the momentum flux in a strongly stratified shear flow for
Ri = 10 and Ri = 100 computed using RDT. The turbulent momentum flux changes sign at

Nt =
√

3, as a result of the restoring effect of the buoyancy forces. (b) Sketch of the particle
motion in the initial stage of decay of a turbulent shear flow, and the induced momentum flux.
Left: non-stratified flow. Right: stratified flow.
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Figure 3. (a) Short-time evolution of the buoyancy flux in a strongly-stratified shear flow for
Ri = 10 and Ri = 100 computed using RDT. Here two values of the potential to kinetic energy
ratio are considered: r = 0 (left) and r = 1 (right). The turbulent buoyancy flux changes sign at

Nt =
√

15/8, as a result of the restoring effect of the buoyancy forces. (b) Sketch of the particle
motion in the initial stage of decay of turbulence, and the induced mass flux. Left: non-stratified
flow (c is the concentration of a passive scalar). Right: stratified flow.

By writing the fluxes −u′w′ and −ρ′w′ in terms of the mean gradients of velocity
and density as

−u′w′
(

dū

dz
, t

)
= 2

5
u′20 t[1− 1

3
(Nt)2]

dū

dz
(2.24)
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–u′w′
Nt = 1

Nt = 0 and 31/2

Nt >31/2

du/dz

Figure 4. Short-time plot of the momemtum flux against the mean flow gradient in a strongly

stratified turbulent shear flow, computed using RDT for any r. For Nt >
√

3, the momentum flux
becomes counter-gradient.

and

−ρ′w′
(

dρ̄

dz
, t

)
= −u′20 (1− 2r)t

[
1− 8

15

g

ρr
(Nt)2

(
dρ̄

dz

)2
]

dρ̄

dz
, (2.25)

it is clear how the above explanation of oscillation leads to a change in the signs of
the fluxes.

Also, following Phillips (1972) and Posmentier (1977), this allows us to plot the
turbulent fluxes as functions of the mean gradients (see figures 4 and 5) at different
times. These graphs must be treated with caution because they are instantaneous
curves during a rapidly changing flow.

2.2. Time-dependent shear and stratification

The previous results are easily extended to the case of a time-dependent mean shear
and stratification: α and N have initial values α0 and N0 (associated with the initial
mean flow and mean density linear profiles ū0(z) and ρ̄0(z)) and are slowly varying as
a function of time (on a time scale N−1

0 ). Thus, the assumptions (2.8), (2.9) and (2.10)
are still valid, based on α0 and N0.

For short times, time-series expansions may be used:

α(t) =

∞∑
p=0

αp(α0t)
p, n(t) = N2(t) =

∞∑
p=0

np(α0t)
p =

∞∑
p=0

ñp(N0t)
p, (2.26)

û′i(k0, t) =

∞∑
p=0

û′ip(k0)(α0t)
p, ρ̂′(k0, t) =

∞∑
p=0

ρ̂′p(k0)(α0t)
p, (2.27)

where ñp = npRi
−p/2. Therefore, the changes in α(t) and N(t) are small (O(Ri−1/2))

over the period N−1
0 , which means that the flow is subject to a slowly varying rapid

distortion. Nazarenko et al. (1999) have recently studied similar effects of a slowly
varying strain using WKB methods.

Equations (2.7) are then solved for short times using exactly the same method as
previously described, but now the change in the vertical wavenumber is affected by
the varying shear as

k3(t) = k30 − k1

∞∑
p=0

αp

p+ 1
(α0t)

p+1. (2.28)
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Figure 5. Short-time plot of the buoyancy flux against the mean density gradient in a strongly
stratified turbulent flow, computed using RDT for three values of the potential to kinetic energy
ratio: (a) r < 1/2, (b) r = 1/2 and (c) r > 1/2.

The new solutions for the momentum and buoyancy fluxes when Ri� 1 are modified
as follows:

−u′w′(t)
u′20

= A(α0t) + C
α1

α0

(α0t)
2 +

(
BRi0 + D

α2

α0

)
(α0t)

3 + o((α0t)
4) (2.29)

and

−ρ′w′(t)α0

u′20 dρ̄0/dz
= H(α0t) + J

n1

n0

(α0t)
2 +

(
IRi0 +K

n2

n0

)
(α0t)

3 + o((α0t)
4), (2.30)

or

−ρ′w′(t)
(u′20 /N0) dρ̄0/dz

= H(N0t) + J
ñ1

n0

(N0t)
2 +

(
I +K

ñ2

n0

)
(N0t)

3 + o((N0t)
4), (2.31)

where A, B, H and I are unchanged. The new coefficients are: C = 1/5, D = 2/15,
J = 1/2 and K = 1/3. Thus, the time variation of α and N does not produce any
new effect linking the shear and stratification parameters. Effectively, (2.29) and (2.31)
show that the turbulence adjusts quasi-steadily.
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2.3. Non-uniform shear and stratification

When the initial shear and stratification (and thus the initial Richardson number) are
uniform, the previous results show that the momentum and buoyancy fluxes are also
uniform. Thus, unless as in the previous section α and N are changed by an external
forcing, the mean flow and stratification remain unchanged as turbulence decays.
This was also clear in (1.3) which shows that when ∂zzū = 0 and ∂zzρ̄ = 0, the mean
flow and mean density profiles remain unaffected even if turbulent fluxes develop.
But suppose that initially the mean flow and mean density gradients are not uniform,
then the turbulence causes these gradients to change, and we have to consider the
equations for the changes of the mean flow ū(z, t) and mean density ρ̄(z, t) caused by
the energy-containing motion. For these scales of high Reynolds number, molecular
processes may be neglected, namely:

∂tū = ∂z(−u′w′), ∂tρ = ∂z(−ρ′w′). (2.32)

Equivalently, one can write the equations for α(z, t) and n(z, t) (= N2(z, t)) as

∂tα = ∂zz(−u′w′), ∂tn =
g

ρr
∂zz(ρ′w′). (2.33)

As we do not consider the effect of rigid boundaries, we may impose periodic
boundary conditions for α and n.

If α and n vary with z on a lengthscale L such that

L� l0, (2.34)

then eddies of size l0 are locally distorted at each level, z, by a uniform background
shear and stratification. If, in addition, the perturbations of the initial shear profile
α0(z) and stratification profile N0(z) are small, assumptions (2.8), (2.9) and (2.10)
are valid at each height and the RDT analysis continues to be valid in the non-
uniform and changing conditions of these new calculations. Given the expansions
(2.26) and (2.27), and the results (2.29) to (2.31) for the unsteady, uniform shear and
stratification problem, together with the assumption (2.34), we find that α(z, t) and
n(z, t) are governed by

∂tα(z, t) = u′20 ∂zz[Aα0t+ Cα1α0t
2 + Bn0α0t

3 + Dα2α
2
0t

3],

∂tn(z) = u′20 ∂zz[Hn0t+ Jn1α0t
2 + In2

0t
3 +Kn2α

2
0t

3].

}
(2.35)

Identifying powers of t in this system, we can express functions αp(z) and np(z)
(p 6= 0) as functions of the initial profiles α0(z) and n0(z) and their vertical derivatives.
Details of the solution to (2.35) are given in the Appendix. Given the assumptions
that Ri� 1 and L� l0, it is found that the mean velocity and density perturbations
∆ū(z, t) = ū(z, t)− ū0(z) and ∆ρ̄(z, t) = ρ̄(z, t)− ρ̄0(z) up to O(t4) are in fact given by
− ∫ t

0
∂zu′w′ss dt and − ∫ t

0
∂zρ′w′ss dt, where u′w′ss and ρ′w′ss are the steady-state values of

the fluxes given by (2.24) and (2.25), namely:

∆ū(z, t) =
u′20
5

(
d2ū0

dz2

)
t2 +

u′20
30

g

ρr

d

dz

(
dū0

dz

dρ̄0

dz

)
t4,

∆ρ̄(z, t) = (1− 2r)

[
u′20
2

(
d2ρ̄0

dz2

)
t2 +

4u′20
15

g

ρr

(
dρ̄0

dz

)(
d2ρ̄0

dz2

)
t4
]
.

 (2.36)



Layers in stratified turbulence 255

This solution may be rewritten as

∆ū(z, t) ∼ u′0
(α0t)

2

Sh
[1 + λu(N0t)

2],

∆ρ̄(z, t) ∼ L

(
dρ̄0

dz

)
(α0t)

2

Sh2
[1− λρ(N0t)

2],

 (2.37)

where α0 and N0 are the order of magnitude of the initial mean shear and mean
Brunt–Väisälä frequency and Sh = α0L/u

′
0 is a measure of the shear flow velocity

compared to the r.m.s. velocity of the turbulence. The parameters λu and λρ are
coefficients of order unity that depend on the form of the initial profiles ū0(z) and
ρ̄0(z); λu may be positive or negative, whereas λρ is positive. Note that in the absence of
stratification, there would be the usual diffusive terms proportional to u′40 (d4ū0/dz

4)t4

and u′40 (d4ρ̄0/dz
4)t4; these are smaller than the t4 terms in (2.36), since the assumptions

(2.8) and (2.34) imply that u′40 /N4
0L

4 � u′40 /N4
0 l

4
0 � 1 (see the Appendix).

This solution now allows us to calculate the short-time evolution of the mean
flow and stratification profiles. As with other RDT analyses of locally homogeneous
turbulence, the variation of the one-point moments (i.e. covariances and variances)
does not depend on the form of the initial spectrum of turbulence and therefore the
variations of the mean profiles also do not depend on the spectra; but they do depend
on:

(i) the lengthscale of the initial mean flow and stratification profiles and the initial
intensity of turbulence u′20 , characterized by Sh = α0L/u

′
0;

(ii) the initial ratio of potential to kinetic turbulent energy r; and
(iii) the degree of anisotropy (which in these calculations is taken as zero).

In the next section, we discuss the behaviour of the solution for different initial
conditions.

3. Growth of density and velocity profile perturbations
3.1. Shear-free mean density profile perturbation

We first consider the small perturbation ∆ρ̄(z, t) of an initial density profile ρ̄0(z) in
the absence of a mean shear. The buoyancy frequency varies slowly with space and
time and has the initial mean value N0. The analytical results of (2.36) reduce to

∆ū(z, t) = 0,

∆ρ̄(z, t) =
(1− 2r)u′20

2
t2[1− 8

15
(N0t)

2]
d2ρ̄0

dz2
.

 (3.1)

Thus, a perturbation in the mean density profile has no effect on the mean flow for
short times when no mean shear is imposed at t = 0, whereas the evolution of the
perturbation may be described by defining a time-dependent eddy diffusivity as

κe(t) =
∂ρ̄/∂t

∂2ρ̄/∂z2
' ∂ρ̄/∂t

d2ρ̄0/dz2
= (1− 2r)u′20 t[1− 16

15
(N0t)

2], (3.2)

which may be written in non-dimensional terms as

κe(t)/κ = (1− 2r)Fr ReP N0t[1− 16
15

(N0t)
2], (3.3)

where P = ν/κ is the Prandtl number, κ is the molecular diffusivity of the fluid, ν is
the viscosity of the fluid, Re = u′0l0/ν is the initial Reynolds number and Fr = u′0/N0l0.
Thus, comparing (2.25), (3.1) and (3.3), we note that the density flux ρ′w′, the mean
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Figure 6. Short-time evolution of the eddy diffusivity in a strongly stratified turbulent flow computed
using RDT and direct numerical simulation (from Galmiche et al. 2002). Here the time unit is the
Brunt–Väisälä period.

density perturbation ∆ρ̄ and the eddy diffusivity do not change sign until t ∼ N−1
0

as a result of the correlated oscillations of the variances and other statistics of the
flow field, as noted in previous direct numerical simulations and RDT calculations
for N0t >∼ 1 (reviewed by Hanazaki & Hunt 1996), and in Reynolds stress transport
models (e.g. Launder 1996) calculations. In the previous studies the density gradient
was uniform.

For non-uniform density gradients, we note on figure 6 that the density flux and
κe/κ are found to reach a maximum value according to (3.3) of (

√
5/6)Fr ReP = 2.46.

In dimensional terms, the maximum value of κe is about 2.5u′20 /N, which is the same
order as that observed for the diffusivity in a steady-state turbulent shear flow (Hunt,
Kaimal & Gaynor 1985). Figure 6 also shows that for t <∼ N−1

0 (as anticipated by
the order of magnitude analysis justifying the use of RDT), there is a close agreement
between the RDT solution for short times and the temporal oscillations of an initial
z-periodic perturbation (∼ cos z) of the mean density profile computed in direct
numerical simulations by Galmiche et al. (2002) when Fr = 0.12, Re = 55, P = 1
and r = 0. In particular, the maximum value of κe/κ agrees to within 1%. The
eddy diffusivity starts decreasing and becomes negative at N0t ' 1.1 in these direct
simulations, whereas the value provided by (3.3) is

√
15/16.

Physically, (3.3) is simple to interpret: where the density gradient is larger the tur-
bulence is damped and therefore the gradient is locally diffused less by the turbulence
than in regions where the gradient is weaker. This is Phillips’s (1972) mechanism and
leads to ‘layering’ of the vertical density gradient. This occurs when the stratification
is strong (low Fr) but notice that according to (3.3), the phenomenon is enhanced
when Re or P are increased, and for small r.

The solution (3.1) also shows that the perturbation evolves faster when d2ρ̄0/dz
2

is increased. This means that the small-scale modes grow faster than the large-scale
modes. This is consistent with the experiments of mixing in salt water carried out by
Park et al. (1994), in which small steps in the mean density profile are formed first.
However, relations (2.8) and (2.34) impose the lower limit u′0/N0 on the lengthscale
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Figure 7. Short-time evolution of the eddy viscosity in a strongly stratified turbulent shear flow
computed using RDT and direct numerical simulation (ensemble average over six realizations, from
Galmiche et al. 2002). Here the time unit is the Brunt–Väisälä period.

of the growing perturbation. Thus, we expect from our short-time results that density
layers may be formed with a thickness of order u′0/N0. This result is also in agreement
with the observations of Park et al. (1994).

3.2. Mean shear perturbations with uniform density gradient

We now consider the mean perturbation ∆ū(z, t) to an initial mean profile ū0(z) with
uniform Brunt–Väisälä frequency N0. Equations (2.36) then lead to

∆ū(z, t) =
u′20
5
t2[1− 1

6
(N0t)

2]
d2ū0

dz2
,

∆ρ̄(z, t) = 0.

 (3.4)

Thus, the mean shear does not affect the density profile for short times, whereas the
mean flow is subject to the effect of a time-dependent eddy viscosity:

νe(t) =
∂ū/∂t

∂2ū/∂z2
' ∂ū/∂t

d2ū0/dz2
= 2

5
u′20 t[1− 1

3
(N0t)

2], (3.5)

which in non-dimensional terms is

νe(t)/ν = 2
5
Fr ReN0t[1− 1

3
(N0t)

2]. (3.6)

Comparing (3.4) and (3.6) with (3.1) and (3.3) shows that in this case, the pertur-
bations to the mean velocity profile and eddy viscosity caused by the buoyancy-driven
oscillations are about one half to one third as great as those of the density profile
and diffusivity.

Figure 7 shows that this RDT short-time solution is in agreement with the direct
numerical simulations of Galmiche et al. (2002) when Fr = 0.12, Re = 55 and P = 1.
In these simulations, the initial mean flow profile is z-periodic (∼ cos z) with an
initial z-periodic Richardson number varying between 100 and ∞ (which satisfies the
assumption (2.9)). The ratio νe/ν is found to reach the maximum value of about 1.7 in
the direct simulations, whereas the maximum value is (4/15)FrRe = 1.76 in our RDT
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Figure 8. Sketch of the short-time evolution of the mean flow profile in a strongly stratified
turbulent flow with uniform initial shear and non-uniform initial stratification, as predicted by the
RDT model.

model. Then, the eddy viscosity starts decreasing and becomes negative at N0t ' 1.7,
which is close to

√
3 as predicted by (3.6), and causes the mean current velocity to

increase. Note that these are results for strongly stratified flows (low Fr and high
Ri) but do not depend on the initial amount of potential energy r. Furthermore,
(3.6) shows that the amplitude of the eddy viscosity variations are larger when the
Reynolds number is increased.

The solution (3.4) also shows that the mean flow perturbation evolves faster the
greater the initial curvature of the profile, d2ū0/dz

2. For the density layers, this result
together with relations (2.8) and (2.34) suggest that shear layers may develop with a
thickness of order u′0/N0 when Ri� 1.

3.3. Coupled mean shear and mean stratification perturbation

The evolution of ∆ρ̄(z, t) up to O((N0t)
4) when Ri� 1 (see system (2.36)) is uncoupled

from the mean velocity gradient. This was already clear in (2.22) which shows that
the momentum flux is not affected by the mean shear for short times. However, the
mean perturbation ∆ū(z, t) to the velocity gradient is coupled to the non-uniformity
in the initial density gradient through the term (dū0/dz)(d

2ρ̄0/dz
2). In the simplest

case in which this coupling effect appears there is a uniform mean shear α0 = dū0/dz
and an initially non-uniform stratification N0(z) (its mean value being again denoted
by N0). Then, the density profile evolves as in (3.1) in proportion to t2, whereas the
mean velocity perturbation ∆ū develops slowly in proportion to t4 as given by

∆ū(z, t) =
u′20
30

g

ρr
α0

d2ρ̄0

dz2
t4 ∼ u′0(α0t)

4 Ri

Sh
∼ u′0(N0t)

4

RiSh
, (3.7)

where again S = α0L/u
′
0 and Ri = N2

0/α
2
0. Thus, whatever the curvature of the density

profile, the mean velocity profile develops a curvature and may tend to form layers
(see figure 8).

The coupled evolution of ū and ρ̄ shows that the shear and density layers tend to
develop spatially in phase. To our knowledge, there is no available direct numerical
simulation to confirm this tendency. However, the coexistence of such layers was
observed experimentally by Pearson & Linden (1983) in the final stage of decay of
turbulence. Notice that this result is valid for any value of r, although it must be
emphasized that the initial turbulence is isotropic.
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4. Discussion and conclusion

We have used the rapid distortion theory to compute the short-time development of
momentum and buoyancy fluxes when either or both strong stratification and mean
shear are suddenly imposed on an initially isotropic turbulence, and when the mean
stratification and velocity profiles vary slowly with time. The results (3.1)–(3.7), which
all demonstrate the tendency of such flows to form layers in the initial stages, may
be summarized as follows.

(i) The oscillations of the energy and the fluxes of the turbulence can amplify
initial perturbations to the mean density profile (on lengthscales that are much larger
than that of the turbulence). This is equivalent to an oscillation in the eddy diffusivity,
such that it reaches a maximum value of order u′20 /N0 and changes sign after a
time of order N−1

0 . This result is in agreement with the direct numerical simulations
performed by Galmiche et al. (2002) for short times.

(ii) Similarly, the effect of stable stratification on turbulence can cause amplifi-
cation to perturbations to the mean velocity profile. This is mathematically equivalent
to oscillations in the value of the eddy viscosity which reaches a maximum value of
order u′20 /N0 and then decreases and becomes negative. The timescale for the mean
flow oscillations is about twice that for the mean density profile oscillations. This
result is also in agreement with the direct numerical simulations of Galmiche et al.
(2002) for short times.

(iii) The mean velocity perturbations are coupled to the perturbations in the mean
density profile when a uniform mean shear is initially present, whereas the evolution
of the mean density profile is uncoupled from the mean shear profile (these results are
valid for Fr � 1, Ri � 1 and t ∼ N−1

0 ). The solution shows how this coupling leads
to the formation of shear layers in a turbulent shear flow subject to a non-uniform
stratification. Direct numerical simulation of such flows or laboratory observations
are still needed to confirm this tendency in the first stage of decay of turbulence.

For long times (when N0t >∼ 1), the growth of the perturbations in ū and N may
depend on the mean shear and the value of Ri, as suggested by the linear calculations
of the buoyancy flux in stratified turbulent shear flows undertaken by Hanazaki &
Hunt (1999).

Another important result is that the perturbation of the mean density and mean
flow profiles are expected to grow if its scale L > u′0/N0, but that the growth is faster
as L decreases (i.e. d2ρ̄0/dz

2 or d2ū0/dz
2 increases). This suggests a theoretical reason

why the characteristic thickness of layers is of order u′0/N0, as observed by Park et
al. (1994). Other quasi-steady-state arguments, such as those invoked by Balmforth
et al. (1998) have also been used to address this question. Of course, this scale is the
natural scale for particle displacements and determines density fluctuations measured
in the environment (Hunt et al. 1985).

From these linear calculations it is not clear whether the fluxes and mean perturba-
tions of the profiles lead to permanent layering or whether their evolution is merely
oscillatory. Also it is not clear whether mean density perturbations can grow that are
independent of mean velocity perturbations. Calculations incorporating nonlinear and
molecular effects are necessary to address these two questions. In the direct numerical
simulations of the fully nonlinear equations of motion performed by Galmiche et
al. (2002), it is observed that the eddy viscosity acting on a mean flow profile in
the presence of a strong uniform stratification not only oscillates but also remains
persistently negative, which leads to the formation of permanent shear layers. In
laboratory experiments where grids or obstacles with wakes have been towed through
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stably stratified tanks at very low values of Froude number, the velocity profiles in
the wakes tend to be sharply diffused and to persist downwind. This is consistent
with (3.7) which shows that the eddy viscosity tends to be reduced at the top and
bottom of the wake where |d2ρ̄0/dz

2| is largest. On the other hand, in the numerical
simulation of Galmiche et al. (2002) in the absence of a mean shear, a perturbation of
the mean density profile was found to oscillate in time but no permanent growth was
observed. One possible reason is the low values of the Reynolds and Prandtl numbers
used in these simulations. Furthermore, the laboratory experiments of Pearson &
Linden (1983) and Park et al. (1994) on decaying stratified turbulence without any
imposed shear show that density layers form and slowly decay. No oscillations were
reported. Perhaps one reason for the formation of semi-permanent layers is that the
mean velocity and mean density perturbations are coupled, but apparently tend to
vary on different timescales. This precludes any coupled oscillation. Further study of
this point is needed.

In conclusion, this analysis is in good agreement with the direct simulations per-
formed by Galmiche et al. (2002) for short times, and also provides us with a
better understanding of the unsteady formation of layering in geophysical flows and
laboratory experiments when the layering involves both density and mean velocity
perturbations. It is important to emphasize that steady and unsteady stably stratified
turbulent flows have some quite distinct characteristics (Fernando & Hunt 1996).
However, further investigations are still needed to take nonlinear mechanisms into
account. In strongly stratified flows at high Reynolds number, nonlinear and wave
interaction at levels of large vertical mean velocity and density gradients invalidate
the local eddy diffusivity and eddy viscosity concepts, partly because wave/wave
interactions and local critical layers are expected to generate small scales in the mean
profiles as described by Galmiche, Thual & Bonneton (2000) for instance.

More generally, it seems that there is much interesting work still to be done on
layering processes in stratified turbulence. As mentioned in the introduction, a variety
of theoretical approaches have been proposed by different authors, suggesting that
layers may be described either in terms of tendency to anisotropy or turbulence–mean
field interactions, or in the framework of the stability theory. They may also be seen as
a balanced state of stratified turbulence. Although different approaches lead to similar
conclusions, the connection between them is not obvious. For example, the typical
lengthscale of layers u′0/N0 derived in the present paper also appears as a typical
lengthscale in the study of Billant & Chomaz (2000), where it is defined as a vertical
decorrelation lengthscale. In realistic oceanic or atmospheric flows the definition of
the best indicator for layering is not straightforward. The approach of the problem
still needs to be unified, and special attention has to be paid to the difference between
anisotropy and vertical inhomogeneity of stratified turbulence.
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Appendix
The resolution of (2.35) leads to

α(z, t) = α0 +
Au′20

2

d2α0

dz2
t2 +

[
Bu′20

4

d2(α0n0)

dz2
+
ADu′40

8

d4α0

dz4

]
t4 (A 1)

and

n(z, t) = n0 +
Hu′20

2

d2n0

dz2
t2 +

[
Iu′20
4

d2n2
0

dz2
+
HKu′40

8

d4n0

dz4

]
t4. (A 2)

Using vertical lengthscale L, we have (when t ∼ N−1
0 )

Bu′20
4

d2(α0n0)

dz2
t4 = O

[(
u′0
N0L

)2

α0

]
,

ADu′40
8

d4α0

dz4
t4 = O

[(
u′0
N0L

)4

α0

]
,

Iu′20
4

d2n2
0

dz2
t4 = O

[(
u′0
N0L

)2

n0

]
,

HKu′40
8

d4n0

dz4
t4 = O

[(
u′0
N0L

)4

n0

]
.

Provided that assumptions (2.8) and (2.34) are satisfied, we have

u′0
N0L

=
u′0
N0l0

l0

L
� 1, (A 3)

and the solution thus reads at leading order:

α(z, t) = α0 +
Au′20

2

d2α0

dz2
t2 +

Bu′20
4

d2(α0n0)

dz2
t4, (A 4)

n(z, t) = n0 +
Hu′20

2

d2n0

dz2
t2 +

Iu′20
4

d2n2
0

dz2
t4, (A 5)

which leads rapidly to the solution for ∆ū(z, t) and ∆ρ̄(z, t).
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